Translation-invariant propelinear codes

نویسندگان

  • Josep Rifà
  • Jaume Pujol
چکیده

A class of binary group codes is investigated. These codes are the propelinear codes, deened over the Hamming metric space F n , F = f0; 1g, with a group structure. Generally, they are neither abelian nor translation invariant codes but they have good algebraic and com-binatorial properties. Linear codes and Z 4-linear codes can be seen as a subclass of prope-linear codes. Exactly, it is shown here that the subclass of translation invariant propelinear codes is of type Z k 1 2 Z k 2 4 Q k 3 8 where Q 8 is the non abelian quaternion group of eight elements. For k 2 = k 3 = 0 we obtain linear binary codes and for k 1 = k 3 = 0 we obtain Z 4-linear codes. The McWilliams Identity for the class of additive propelinear codes {the abelian subclass of the translation invariant propelinear codes{ is stablished. Finally, a family of non-linear binary perfect codes with a very simply construction and a very simply decoding algorithm is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relating propelinear and binary G-linear codes

In this paper we establish the connections between two di7erent extensions of Z4-linearity for binary Hamming spaces. We present both notions – propelinearity and G-linearity – in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and trans...

متن کامل

Families of Hadamard Z2Z4Q8-codes

A Z2Z4Q8-code is a non-empty subgroup of a direct product of copies of Z_2, Z_4 and Q_8 (the binary field, the ring of integers modulo 4 and the quaternion group on eight elements, respectively). Such Z2Z4Q8-codes are translation invariant propelinear codes as the well known Z_4-linear or Z_2Z_4-linear codes. In the current paper, we show that there exist"pure"Z2Z4Q8-codes, that is, codes that ...

متن کامل

On binary 1-perfect additive codes: Some structural properties

The rank and kernel of 1-perfect additive codes is determined. Additive codes could be seen as translation-invariant propelinear codes and, in this correspondence, a characterization of propelinear codes as codes having a regular subgroup of the full group of isometries of the code is established. A characterization of the automorphism group of a 1-perfect additive code is given and also the ca...

متن کامل

Kronecker sums to construct Hadamard full propelinear codes of type CnQ8

Hadamard matrices with a subjacent algebraic structure have been deeply studied as well as the links with other topics in algebraic combinatorics [1]. An important and pioneering paper about this subject is [5], where it is introduced the concept of Hadamard group. In addition, we find beautiful equivalences between Hadamard groups, 2-cocyclic matrices and relative difference sets [4], [7]. Fro...

متن کامل

On the Number of Nonequivalent Propelinear Extended Perfect Codes

The paper proves that there exists an exponential number of nonequivalent propelinear extended perfect binary codes of length growing to infinity. Specifically, it is proved that all transitive extended perfect binary codes found by Potapov (2007) are propelinear. All such codes have small rank, which is one more than the rank of the extended Hamming code of the same length. We investigate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1997